Exponents of Diophantine Approximation and Sturmian Continued Fractions
Exponents of Diophantine Approximation and Sturmian Continued Fractions
Yann Bugeaud[1]; Michel Laurent
- [1] Université Louis Pasteur, U. F. R. de mathématiques, 7 rue René Descartes, 67084 STRASBOURG (France), Institut de Mathématiques de Luminy, U.P.R. 9016, case 907, 163 avenue de Luminy, 13288 MARSEILLE CEDEX 9 (France)
Annales de l'institut Fourier (2005)
- Volume: 55, Issue: 3, page 773-804
- ISSN: 0373-0956
Access Full Article
topAccess to full text
Full (PDF)
Abstract
topHow to cite
top- MLA
- BibTeX
- RIS
Bugeaud, Yann, and Laurent, Michel. "Exponents of Diophantine Approximation and Sturmian Continued Fractions." Annales de l'institut Fourier 55.3 (2005): 773-804. <http://eudml.org/doc/116208>.
@article{Bugeaud2005,
abstract = {Let $\xi $ be a real number and let $n$ be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents $w_n(\xi )$ and $w_n^*(\xi )$ defined by Mahler and Koksma. We calculate their six values when $n=2$ and $\xi $ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction $\xi $ by quadratic surds.},
affiliation = {Université Louis Pasteur, U. F. R. de mathématiques, 7 rue René Descartes, 67084 STRASBOURG (France), Institut de Mathématiques de Luminy, U.P.R. 9016, case 907, 163 avenue de Luminy, 13288 MARSEILLE CEDEX 9 (France)},
author = {Bugeaud, Yann, Laurent, Michel},
journal = {Annales de l'institut Fourier},
keywords = {Diophantine approximation; Sturmian sequence; simultaneous approximation; transcendence measure},
language = {eng},
number = {3},
pages = {773-804},
publisher = {Association des Annales de l'Institut Fourier},
title = {Exponents of Diophantine Approximation and Sturmian Continued Fractions},
url = {http://eudml.org/doc/116208},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Bugeaud, Yann
AU - Laurent, Michel
TI - Exponents of Diophantine Approximation and Sturmian Continued Fractions
JO - Annales de l'institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 3
SP - 773
EP - 804
AB - Let $\xi $ be a real number and let $n$ be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents $w_n(\xi )$ and $w_n^*(\xi )$ defined by Mahler and Koksma. We calculate their six values when $n=2$ and $\xi $ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction $\xi $ by quadratic surds.
LA - eng
KW - Diophantine approximation; Sturmian sequence; simultaneous approximation; transcendence measure
UR - http://eudml.org/doc/116208
ER -
References
top- W.W. Adams, J.L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198 Zbl0366.10027MR441879
- J.-P. Allouche, J.L. Davison, M. Quefféle, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), 39-66 Zbl0998.11036MR1869317
- B. Arbour, D. Roy, A Gel'fond type criterion in degree two, Acta Arith. 11 (2004), 97-103 Zbl1064.11049MR2038064
- A. Baker, W.M. Schmidt, Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc. 21 (1970), 1-11 Zbl0206.05801MR271033
- R.C. Baker, On approximation with algebraic numbers of bounded degree, Mathematika 23 (1976), 18-31 Zbl0327.10034MR409373
- V.I. Bernik, Application of the Hausdorff dimension in the theory of Diophantine approximations, Acta Arith. 42 (1983), 219-253 Zbl0482.10049MR729734
- Y. Bugeaud, On the approximation by algebraic numbers with bounded degree, Algebraic number theory and Diophantine analysis (Graz, 1998) (2000), 47-53, de Gruyter, Berlin Zbl0959.11033
- Y. Bugeaud, Approximation par des nombres algébriques, J. Number Theory 84 (2000), 15-33 Zbl0967.11025MR1782258
- Y. Bugeaud, Mahler's classification of numbers compared with Koksma's, Acta Arith. 110 (2003), 89-105 Zbl1029.11034MR2007546
- Y. Bugeaud, Approximation by algebraic numbers, 160 (2004), Cambridge University Press Zbl1055.11002MR2136100
- Y. Bugeaud, O. Teulié, Approximation d'un nombre réel par des nombres algébriques de degré donné, Acta Arith. 93 (2000), 77-86 Zbl0948.11029MR1760090
- J. Cassaigne, Limit values of the recurrence quotient of Sturmian sequences, Theor. Comput. Sci. 218 (1999), 3-12 Zbl0916.68115MR1687748
- H. Davenport, W.M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967), 169-176 Zbl0155.09503MR219476
- H. Davenport, W.M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1969), 393-416 Zbl0186.08603MR246822
- H. Davenport, W.M. Schmidt, Dirichlet's theorem on Diophantine approximation, IV (1970), 113-132, Academic Press, London Zbl0226.10032
- J.L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29-32 Zbl0326.10030MR429778
- K. Falconer, The geometry of fractal sets, 85 (1985), Cambridge University Press Zbl0587.28004MR867284
- V. JarniK, Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz. 36 (1928/29), 91-106 Zbl0005.34602
- V. JarniK, Zum Khintchineschen `Übertragungssatz', Trav. Inst. Math. Tbilissi 3 (1938), 193-212 Zbl0019.10602
- J.F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monats. Math. Phys. 48 (1939), 176-189 Zbl0021.20804MR845
- M. Laurent, Some remarks on the approximation of complex numbers by algebraic numbers, Proceedings of the 2nd Panhellenic Conference in Algebra and Number Theory (Thessaloniki, 1998) 42 (1999), 49-57 Zbl0971.11035
- M. Laurent, Simultaneous rational approximation to the successive powers of a real number, Indag. Math. 11 (2003), 45-53 Zbl1049.11069MR2015598
- K. Mahler, Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math. 166 (1932), 118-150 Zbl0003.15101
- M. Queffélec, Approximations diophantiennes des nombres sturmiens, J. Théor. Nombres Bordeaux 14 (2002), 613-628 Zbl1076.11044MR2040697
- A.M. Rockett, P. Szüsz, Continued Fractions, (1992), World Scientific, Singapore Zbl0925.11038MR1188878
- D. Roy, Approximation simultanée d'un nombre et son carré, C. R. Acad. Sci. Paris 336 (2003) Zbl1038.11042MR1968892
- D. Roy, Approximation to real numbers by cubic algebraic numbers, I, Proc. London Math. Soc. 88 (2004), 42-62 Zbl1035.11028MR2018957
- D. Roy, Approximation to real numbers by cubic algebraic numbers, II, Ann. of Math. 158 (2003), 1081-1087 Zbl1044.11061MR2031862
- D. Roy, Diophantine approximation in small degree, 36 (2004), 269-285, Amer. Math. Soc. Zbl1077.11051
- V.G. Sprindzuk, Mahler's problem in metric number theory, 25 (1969), Amer. Math. Soc., Providence, R.I. Zbl0181.05502MR245527
- E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. reine angew. Math. 206 (1961), 67-77 Zbl0097.03503MR142510
Citations in EuDML Documents
top- Damien Roy, Rational approximation to real points on conics
- Boris Adamczewski, Yann Bugeaud, Palindromic continued fractions
- Yann Bugeaud, On simultaneous rational approximation to a real number and its integral powers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
Source: https://eudml.org/doc/116208
0 Response to "Exponents of Diophantine Approximation and Sturmian Continued Fractions"
Post a Comment